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ABSTRACT
It is shown that the initial-value problem u, = A(Iulm_1u), u{x,0) =

uo(x), where m > 1, has a solution on RN x {0,T) for some T > 0 if

-(E%T +N)
R f{|x|<R}|u0(x)ldx is bounded independently of R 2 1. The

restriction on u,; is known to be necessary as well by recent results of
Aronson and Caffarelli, so this theorem is the best possible. Many
supplementary results give refined estimates on the solution under various
conditions on ug, establish uniqueness within the existence class, allow

Uy to be a Radon measure, establish continuous dependence on ug in various

spaces, etc.
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. SIGNIFICANCE AND EXPLANATION
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This work establishes existence of solutions of the initial-value problem
P Pt

N -
ué = A(lulm 1u), u({x,0) = uo(x), where m > 1, under the most general

[ -

tonditions on u,. Namely, u, need only be such that
N " :

—- 2 e e
-(E:? +N). : r*J‘g"r .
R ’ ]{|x|<R}hn (x)ldx is bounded independently of R 2 1. Aronson

and Caffare111 have shown this requirement to be necessary. Many auxiliary

resultg are given in the form of estimates on sclutions, uniqueness and
IR S

" continuous dependence theoxems, etc.

While the results may be viewed as "technical” in that the main points
consist of estimates of various sorts, the equation treated is of broad
practical interest and the estimates reflect basic properties of the
equation. The results obtained are the only ones known to the authors wherein
the solvability of a realistic nonlinear initial value problem for a partial
differential equation is now understood as completely as in the case of the

heat equation.

; &\ ‘ [
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The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report.




SOLUTIONS OF THE POROUS MEDIUM EQUATION
N R UNDER OPTIMAL CONDITIONS ON INITIAL VALUES

Philippe Bénilan, Michael G. Crandall and Michel Pierre
Introduction
This paper concerns the initialevalue problem

v, = A(Iulm-1u) on R x (0,T), m > 1 ,

(1IVP)

u(x,0) = uo(x), x € !F B
where the interval of existence (0,T), T > 0, depends on the initiul data ug . We are
interested in solving IVP for the largest possible class of functions up. In fact, we

will prove a nonlinear version of the result which states that the linear problem

u = 8u on IN x (0,T) ,

(0.1)

u(x,0) = uo(x), x € IF

has a solution on some interval [(0,T) if

2
-clx| Ax < *® for some c > 0 .

(0.2) / Iuo(x)le
(Of course, (0.2) guarantees that the solution formula for (0.1) provides a solution on
{0,4/c).) 1If uq > 0 it is know that (0.2) is also necessary for (0.1) to have a solution
u? 0 on some time interval [0,T), T > 0 ([15]).

Here we prove, without the aid of explicit solutions, that (IVP) has a solution on
some interval [0,T) if
(0.3) =

sup R <3 lu
R {ix|<r} "0

(x)|dx < = ,

or, equivalently (see the Appendix),

spongored by the United States Army under Contract No. DAAG29-80-C-0041.
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1 | luy 0
(0.3)°' sup — — dx < »
w1 @ UIKISRE (2 V(=)

This condition is necessary in the class of nonnegative solutions as has been recently
proved by Aronson and Caffarelli [(16].

In fact, we will prove that if l(uo) is given by

-ty 220
(0.4) l(uo) = lim sup R {|x|<R}Iuo(x)|dx R

rt=® Ror
then (IVP) has a solution on a maximal interval [O,T(uo)) with
(0.5) T(uy) > c/l(uo)m-1
where c is a constant depending only on N and m. This result implies (IVP) has a
solution defined for all t > 0 if l(uo) = 0 and (in the class of nonnegative solutions)
we will show the necessity of l(uo) = 0 for global-time existence.

Let us reconcile the above statements with several of the known solvability results
tor (IVP). If v, e L‘(IP), then l(uo) = 0 and T(uo) = ®», The global time solvability
in this case is known via the nonlinear semigroup theory (see [4), [6)). If u; € L’(.F) +
Lo(lP), again l(uo) = 0 and T(uo) = ®, This is also obtainable from known results.

In the other direction, if

1

m~-1

(0.6) uo(x) = (a + leIZ) s, @a,8>0 ,

then the explicit solution

1
k 2——
T .k Ix! )M‘\

u(x,t) = (G '

(T-t)k 2nN T-t
Nm-1) X 1
k> Sm-1+2 * ""ZmB

shows u "blows up" at k/zuN(l(uo))m.1. This verifies that (0.5) is sharp as regards the
functional dependence on l(uo). Further remarks concerning the sharpness of (0.5) and

"blow up” may be found in the text.

-2-




B e e

g o i e

The existence proof herein relies on rather novel estimates, the main one being an

estimate of

(0.7) vix,t) = —2ixE)

(l+lx|2) 1/(m~1)

-
in L (IF) tor t e (0,T(uy)) 4in terms of the norm of u, defined by (0.3), 1In the
process of obtaining this estimate we use the inequality established by Aronson and Benilan .
[1), namely

m~1

(0.8) ™1 > -‘-: , c= clmN)

for certain nonnegative solutions of (IVP). We prove that if u > 0 satisfies (0.8)

then v = u/(1+|x|2)1/(°'1) can be estimated in L.(IN) by

=(N+ -;_2—)
(0.9) sup R [ixjemyluteetitax, 21,
RO
that is (see (0.3)') in terms of averages of v over balls centered at the origin., We 1
then control the evolution of the quantity (0.9} with time.
-
The same type of proof also provides various L -estimates of u in terms of various

norms of upe We obtain, for instance, u € L-(ly) for all ¢t > 0 |if

(0.10) sup. 1 ieqplug (X idx < @
zeg®  {Ix-z1€11T0

The existence theorem is precisely formulated and proved in Section 1, as well as the
L.-estimates mentioned above. The case in which u,; is a measure satisfying the analog
of (0.3) is also treated. Section 2 proves the uniqueness of the solutions obtained in
Section 1. Some simple but useful remarks about the space X of functions u, satisfying

(0.3) are collected in the Appendix.




Section 1. Existence

Throughout this section we will be concerned with the problem

u, - Atul®™ ") =0, £>0, xe &Y ,
(Ive)

u{x,0) = uo(x) P
where
(1.1) N?1 and m> 1 ,

To formulate the main existence results for (IVP) we require several definitions. First,

for each f e I.1 (IP) and r > 0, 1let

Loc
~wve 22
(1.2) If'r = gup R B I£l
Ror R

where ]xf denotes the Lebesque integral of f over X c nF and BR = {xe RF)

Ix| $ R}. If K = B we will simply write [f. Note that if 1£1_ is finite for some
r > 0, then it is finite for all r > 0. Set
1 N
(1.3) x={te Looc (B 11 I£F < =}
and equip X with the norm | l1- Clearly X is a Banach space and | Ir is an
equivalent norm on X for any r > 0. If uy € X we define
(1.4) L(u ) = lim fu .
0 i 0'r
Next, for o € R define
-a
o (x) = (1 + Ix|%)
a
and let
1 1 N
Litpy) = {eer, () [ |glo, < =)
be equipped with the norm

o, = [ lelo,
1oy

We will be considering solutions of (IVP) as curves in X, L‘(Du) and other spaces
and will be writing "u(t)" in this context. The local-time existence theorem for (IVP)
is stated next. It is made complex by the detailed information we have put in it. Let us

present the theorem and then discuss its nature.

~4-
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Theorem E

Existence: There is a constant ¢y ? 0 depending only on N and m and a mapping

U {(t,uo) 10 <t <uy), u e X} + x

where

o1
(1.5) T(uo) - c‘/(l(uo)) and T(uo) - jif l(uo) =0 ,

with the properties:

L
(1) If ujex, then '°1/(n—1)"(t'“o)'h-(.u) er, (0,T(u))).

1 N
(i) 1f a > povar 2 and u,; € X, then

ULe,ug) € CLi0,Tluy))s o))
and U(O,uo) = uge

{114) u(t) = U(t,uy) 1is a solution of u, = A(lulm-1u) in the sense of distributions on

¥ x (0,7(uy))e
Estimates: Let
m=1
. > .
(1.6) Tr(“o) - °1/Iuolr for r 1
These are constants Car C4 depending only on N and m {(and not on r) such that the

following estimates hold:

If u,. e€X, 1€r<R and t € {O,Tr(uo)) '

()
(1.7) 10lem - ) o
R 2 /M, N
then 2/ (a1 N Y Sy ey o S
b4 4 u, exXx, r>1, and te [°'Tr(“0)) B

(1.8)

then lu(t.uo)l! < ca'“o'r .

Dependence on Data: If uy, Vo €X, r 2?1, aeRr, te [o,min(rr(uo),rr(vo))), then

< -
) 1 e Iuo vol

lU(t,uo) - U(t,v 1
L (pa) L (pa)

0

O

-y
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th
- < -
(1.10) |U(t,uo) U(t,vo)lr e Iu0 volr
where B, depends only on max(luolr,lvolr,a,r), B, depends only on nax(luolr,lvolt),

and A is given in (1.7).
Ordering Principle: If uy, vy € X, then uy > o implies U(t,uo) > U(t,vo) for

< .
0 t < min(T(uo). T(vo))

dinatnsiatiios ncal

Remark 1. If u, € X, the assertions (i), (ii) of the theorem guarantee us a measurable
representative u(x,t), x € lp, t e (O,T(uo)) of U(',uo) which is locally bounded in

& x (O,T(no)). Thus u, and A(Iulm_1u) are defined in D'(lN x (O,T(uo)) and the T
assertion (iii) is meaningful.

In fact, one can prove regularity for u = U(t,uo) which we have not listed in this

theorem. In the course of proving Proposition 1.6 below it is established that (Iulm'1u)t

and V(lulm-iu) are locally square integrable on RN x (O,T(uo)). Moreover, P, Sacks has

proved (personal communication) that u is continuous on RP x (O,T(uo)). !

Remark 2. The role played by L‘(Dn) is auxiliary: the natural claim would be

'U(',uu) e C([O,T(uo))y X)", but this is unfortunately false in general. One sees this
1

from (i), since functions which are bounded by a multiple of (1 + |x|2)m-1 are not dense

in X (see the Appendix on X). However, for a > ;}T + % one has X ¢ L1(D°) (see
Lemma 1.1 below) and U(',uo) is continuous into L‘(pa). The estimate (1.9) plays a

significant role in the construction of U.

Remark 3. The estimates (1.7), (1.8) occur in the course of the proof and it is convenient

to record them here. Note that (1.7) implies that u(t) = U(t,uy) satisfies

22 1
A -
t {ulx,t)| € c2'“0': max(tz, lxlz)m !
s 2
u(x,t) c(r) N
(1.11) sup < Tu @ for 0 < ¢t < T (u,)
xenF (1+|x|2)1/(m-1) tA 0r r 0

which implies (i) since T(u,) = lim Tr(“o)' The same estimate also gives
rte




22
lu{x,t)| N
(1 + lx‘2)1/(m-1) r

2
(1.12) < iy Tu §

<r ¢ .
: o for 1 r Ixl, 0 < ¢t < Tt(uo)

We will use this consequence below.

Remark 4. The assertion (1.10) shows the continuity into X of the solution of (IVP) with
respect to the initial data in X. It leads to the next result which exhibits a remarkable
correlation between the global sclvability of (1VP), (which is roughly equivalent to

1(u°) = 0 - gee Remark 5) and the assumption of the initial value in the topology of X.
Set

(1.13) X, = (uo e X f(ug) = o} .

Corollary 1.1. Let ug € X5, Then U(t,uo) * u, in X as t ¢ 0. Moreover

U(t,uo) € X, for t >0 and u(t) = U(t,uo) satisfies

u(x,t)
(1.14) 1lim RV =1

Ix|+* (1+]x}7)

0 .

Remark 5. This corollary is proved later, but we mention here that continuity into X

for uy € X, is essentially a consequence of (1.10) coupled with the fact (proved in the
Appendix) that Xy 1is the closure of L1(IF) in X and the known solvability of (IVP)
for uec((0,®: (@) when uye (). The result (1.14) follows from (1.12).
Moreover, using the results of (2] one can prove that, in the nonnegative case, .2(u°) = 0
is necessary for global time solvability of (IVP). Indeed, it is proved in [2] that if
u(x,t) is a continuous nonnegative solution of “t = Aum on [0,1), then

(N+ 2 1+(m-1)'§-

[B uo(x)dx € ¢lR m=1 + u(o0,1) ]
R

where c = c(N,m). If u(t) is defined on (0,®), then uglx,t) = u(Bx, 8%t) is also a

solution for all B ? 1, Hence

2 N
. 7 , Wm-n]
= I,” vy (x)ax = [ uj(Bx)ax € cIR + u(0,8%) ]
B R
or, setting S = BR N
N 1+(m=1)=
L [y wptmiax € it o £ — ut0,8%) 2,
8+ =2y "Bg 2o e A
m=~1 Bm-l s m~1

ol




We deduce that

2
1 N+ 27
<
Iuolr cl + cB/t ]
Bm—l
y (a1
where cg = B8 u(o,B8%) <®, Let r * ® with B fixed and then 8 * » to
conclude &(u_ ) = 0.
0
1 1 1 N
Remark 6. In the scale of spaces L (Dc) we have L (DG) c XO when a < = t3 and

e L‘(pa) for such Q. (See the

Appendix where other cases are also considered.) If Y = ;%T g,

therefore U(t,uo) is defined for all t > 0 if u,

then X > L'(DY) but

uit,u,) will blow up in finite time for some u_ € L1(DY)' A related statement is that no

0

Lo

if t is large. This is clelr from the family of explicit solutions (see Barenblatt (3]

o
ball (uo e L1(DY) : luol €< ¢} is mapped into a bounded set in L (B,) by ult,*)

or Pattle [(10])

+__1_

1 nl lx—xnl2 ] n-1
u (x,t) « ——— {¢c (- « —————] }
" (er)r B8 (PN
—N o AMm=1) .
(m-18+2 ° °m 2w ¢ %p = (R0, 00

(We implicitly assume the uniqueness result of Section 2 here.) Then

mfl N
Iunw) = f n 3. Up(0) € cn
n ¢ ¢ 2=
LIRS
so that
fu _(0)1 4 < 4Yc
L (QY)
while for (‘IM:)ZA/N > 8
4
un(O,t) > -—l——x (gE nzlm-1 .
(1+t)

Remark 7. Combining Theorem E with the uniqueness result of the next section, one can
extend U(t,uo) uniquely to a maximal interval of existence 0 € t < t(uo) for each

Uy € X (see Theorem EU of Section 2). However, the dependence of T(uo) on 1(u0)

-8




cannot have a better form than {(1.5). This is shown by the example in the introduction.
For a general nonnegative solution the computation in Remark 5 also shows that
Tlu,y) < c/l(uo)m-1-
Proof of Theorem E.
Preliminaries: As a launching point we will use that if Uy e L1(IN) n LQ(IF), then (1VP)
has a unique solution u € C({0,®)s L1(RN)) n L-(lN x [0,*)) which satisfies the equation
in the sense of distributions (see, e.g., (7], (6], (5]). Moreover, if

s x @@ ") e "
is given by S(c,uo) = u(t) where u(t) is the solution of (IVP) at time ¢t, then for

a
SV, € L1(I§) nL (IF) we have:

%Yo

(1.15) st*,u) e ctio,=; L)

{1.16) Is(t,u_ ) ~ s(t,v )t €Iy - v ! for t > 0
0 0 L1(‘F) 0 0 L1(.F)

(1.17) Yy < ) implies S(t,uo) < S(t,vo) for t >0

(1.18) egs inf L < S(t,uo) < ess sup u, for t 20

If Uy » 0, then for t > 0

m-1 a N
(1.19) A(S(t,uo) )2 -2 in DURD

m~1 N

where & = S Tamtwer

The relations (1.15) - (1.18) are classical while (1.19) is a result of Aronson and Benilan
[1).
We will also need the following technical result:

Lemma 1,2,

1 N
(1) For a > o + 2

(i1) 1f r > 0, (fn) cL

we have X c L1(pu) with continuous injection.
1 N 1 N

*
loc(l ) and fn f in Lloc(‘ ), then

1El € lim inf I£ 0 .
r ne® nr

The lemma is proved in the Appendix.

-9
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Reduction to S: Here we observe that Theorem E will be proved if we can produce constants

Cy+ €3+ C3. By, B, depending on the indicated quantities such that the assertions (1.7) =~
1@ ® N

(1.10) hold when U is replaced by S and Uy, Vo are chosen from L (R') NL (R).

Indeed, assume (1.7) - (1.10) hold for S. For u ex define the truncations Yo

by
u0n(x) = Tn(uo(x)) if |x| €n ,

(1.22)
u°n(x) =0 if x| >n ,

where Tn t R+ R is given by

8 if -n <8 €< n
Tn(s) = n if n<s

-n if 8 € -n .,

By (1.22) and Lemma 1.2 we have

-»
u, €@ n @) for n>1
o 1
(1.23) “On't increases to .uolr and
1 N
- +> & —— -— .
l\:uon uol 1 +0 as n if a > o1 + 2
L (Da)

Now S(*,u ) is continuous from [0,®) into L‘(l”) and hence into L‘(Da) for

On
a > 0. By (1.9), (assumed for S) and (1.23), {S(t,uOn)} is a Cauchy sequence in

C([OIT:(HO))t L1(9a)) for all r > 1 and a > ;%T + g and thus converges to a limit

which we define to be U(t,uo). The function U(',uo) is then defined on [o,T(uo))

(since Tt(uo) increases to T(uo)) and clearly satisfies (ii), (iii), (1.7), (1.8),
(1.9) and the ordering principle. By Remark 3, (1.7) implies (i). For (1.10), notice that

Tu I_<lJu =-vl and use Lemma 1.2. In this way we reduce the proof of Theorem

on vOn r 0 0r
E to the verification of (1.7) - (1.10) for S.

Proof of Estimates (1.7) and (1.8) for S. It will prove convenient to deal with a

modification of I-lr. Let ¢ satisfy

-10-




$(x) = x(|{x|{} where « @ C;((O,°)) is

(1.24) nonincreasing, «(s) = 1 for 0 € 8 < 1, x(s) =0 for s > 2 and

1

K(s) = e 2-s for 2 - € <3 <2 andsome € @€ (0,1) .

The detailed structure of ¢ is for later convenience. Now define
(1.25) lflr = gup 21
Ror p—ry +N
Rﬂ-

) 0(§)Ifl for r >0 .,

One easily sees that I'Ir and l'lr are equivalent norms on X with equivalence
constants independent of r » 1.
The next result, which is related to our problem via (1.19), is the heart of our
proofs.
-
Proposition 1.3. Let u el (-P) be nonnegative, A e (0,®) and

Aun-’

(1.26) >-A in D' (@Y .

Then there is a constant K depending only on N and m > 1 such that for 1 < r < R

2A (m~1)
(1.27) Lo axa® gy M ™Y
R L (BR)

where A = N/((m=1)N + 2) .

In order to keep the general structure of the proof of Theorem E in view we ﬁostpone
the proof of Proposition 1.3 until the end of this section. The next result yields the
estimates (1.7), (1.8) of Theorem E for § ({recall the equivalence of | Ir and § Ir
uniformly in r 2 1),

Lemma 1.4. There are constants C4¢ Cgr Cg > 0 depending only on N and m > 1 such
that if u, e L‘(IP) n L.(l“), r?2 1 and 0 € t € c4/|u°|:-1, then
(1) Is(t,uo)lt < c5|uolt

and =1
Istt,ug) o 2\ (m-1)
L (BR) g _
(ii) 3 < YT Iuolr for R?>r .
R t
-11-




Proof: We begin here the first of several computations which will have a “formal”
appearance. That is, the computation is clearly valid only if the functions involved are
sufficiently regular. We will not give detailed proofs here that the outcomes of these
computations are valid for the less regular functions we deal with, as this may be done in
a routine way during the construction of S by the reader's favorite method. 1In
particular, one may use the representation of S by the generation theory of nonlinear
semigroups and the results of (5] to do this (see, e.g., [6] for an example).

It will suffice to prove (i) and (ii) for Uy 2 0 since the order preserving property

of s and S(t,-ug) = -S(t,uy) imply

+ +
(S(t,uo)) < S(t,uo)

(S(t,ua))- < -s(:,-u;) - S(t:,u;) ’

where r' = max(r,0), r" = (-r)*. Thus lS(t,uo)I < s(t,u;) + S(t,u;). Thus we take
“0 > 0 Dbelow.

Formally u = S(t,u;) satisfies
5o utee® = [ ued = [ e
= [ "ok = [ u“‘i—z- T I
We integrate this in time to conclude
[ a0 = [ u e + [o [:—: (89 (D)

< [ uytedy + ¢ I5 R 2 ™! . u

B
L (BzR) 2R

x t -2, m1 x_
< | u, (8% + ¢ fo R “tul ) uizm)
L (8,.)

where ¢ denotes a constant varying from line to line. Multiply this inequality by

-(;%T +N)
and take the supremum over R 2 r of both sides to conclude that g(t) =

fuct}|  satisfies

-12=




-1
I Lo
. L (8)
(1.28) glt) € g(0) + ¢ IO (sup -—-T——)q(‘l’)d'l' .
Ror R

Using Proposition 1.3 in conjunction with (1.19) yields

1
Tu(e)t™ -
L (s) , Mme1) ———2“: 1 o
3 <¢c (c-t-) luter] + lue)i)
R
and using this in (1.28) we have
22 (m-1) +,)
(1.29) () € g(0) + ¢ J& (¢ q(ry ¥ + gnMar .
. 9 g 0 tX(m~1)

A continuous solution of (1.29) lies below the solution h of

(1 . 2A (m=1)
h'(t) = c(-iTi:TT hit) N + h(t)m)
(1.30) t

h(0) = g(0) ,
where this time ¢ has the same meaning as in (1.29). To analyze (1.30) we consider the

equation subject to

+ 2A (m-1)

! N

)" < h(t)

.
tk(m—1)
or

0<¢t < me)!
which will be valid for ¢t in some interval (0,b]. On this interval h is bounded above

by the solution H of

1+ 2A (m=1)
26 j(e) N H(0) = g(0)

H'(t) = ——=7 H . = g ’
(1.31) RS
which is explicitly given by

_ 2\ (m-1) 22 N

(1.32) B = [9(0) N - 2@ PR
We conclude that
(1.33) g(t) € h(t) < H(t)

-13-




so long as

(1.34) 0€ Y C1MO™! for 0Tt .

By (1.32), (1.34) reduces to

_ 2\ (w1 22N
o<t (go) N - 2cmni® P
or
%l -(-—1)5l
0 € (1+2c(m=1))T" <€ g(0)
or
(1.35) 0 ¢t <c/gn™ .

Moreover, since H is increasing

(1.36) H(T) < u(c‘/g(o)"‘) = c, g(0) for 0 €1 c‘/g(O)-‘

5
for some constant cg.
The validity of (1.33) and (1.36) on (1.35) yields (i). To obtain (ii), we use again

Proposition 1.3 together with (1.19), (1.33), {1.36) to get

22 (m=1)

1 =1 1 N m=-1

= tul” ‘c[—h fu, | + {u | 1

nz L (BR) " (m=1) 0'r 0'r

< m=1

for 0 €< ¢t c‘/luolr , R>r 21 .

But when tluol:-1 < Cpe WO also have
Ay By gy A1) 4. 2,
T Tt T T W I <lyl V"
0'r 0'x 0'r 0'r t !

whence the estimate (ii) with a suitable cs (since 1 - %l = A(m=1)).

Proof of Estimates (1.9), (1.10) for S.

To obtain (1.10) we formally proceed as follows: Let u = s(t,uo), v - s(t,vo). Let
P i1 R* R be a amooth increasing function with p(0) = 0 and j(r) = I: p(s)ds. Then,

) 0(%)(“\1‘ - Vpa® - v

- -f 0(-;-)p'(ull - VYW - V™2 - J (W(%))p(uln R (TR )

< < W&y - v = [ ednsa® - v

[V




Now, let pl(r) tend to the signum function so that j(u® - v®) tends to |u® - V*[. We

conclude that
/ 0(%)319!\(\:m - VA" - v = 0‘%"19“‘“‘V’A‘“m - v
<f AO(%)Ium -V .
Using that u,v are solutions of u, = Aum, we are led to
a x x m m
=/ a@lu=vl = [ ¢Qrsignluvidu” - v

< f 1secH 1" - v < [ L 1801 Gmaxcalal™ ! mivI®Th fuvi
R

1 -2 -1
= =),
) L (B, ) 2R

< ¢ max(R lu-v|

<c max(n-zlulm:1 ’ R-zlvlm:1 ) J o(gi) fu=v| .
)

L (B2R) L (BZR
-2
Multiplication by R , use of Lemma 1.4 (ii) and integration in time lead to the

conclusion

Biger) | lutn) - w0l
lu(t) - v(t)lr < luo - vol + c(max(|u dt

r Olr' 'Vo'r” o . Alm=1)

for 0 < t < A min(luoll-m, Ivoll-m). The result follows by comparison of

t " ju(t) - v(t)lr with the solution of
-9
h'(t) = k h{t)t

’

h(0) = luo -v

0'r
%A(m-l)
where 6 = A(m=1) < 1 and k = c(nax(luolr, |v0|r)) , namely
k 1-8
1-0
h(t) = Iuo - Volr e .

We prove (1.8) in a similar way, using

a m m
= [ o lu-v] ¢ J By iu” - v

which is obtained as above, while
-2a
(1 + |x|

2
2)a+2 (N + (N~-2a=2)]|x]|")

dpy = A(1 + 9™ =
so that
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p
a
lap | € cC
a Q 1+ |x|2
and
m-1 m=-1
q f max(|uf vl )
L (o fu-vl <Cm /[ fu=vip_ .
dt a a 1+ |x|2 a
But, for r € R € |x| € 2R
Iu(t)l':'
Lulx, )" < 2r)? L (Byp)
1+ 1x12 1R? (2m?
and for |[x| € r a1
fu(e)1™
lute,))™7 (2 L (8
2 ¥ 2
1+ |x} r
so that
turen™)
o1 L (B )
sup, l!LELEl% < c, sup 3 R
xeR 1 + |x| R>r R

Then we can proceed as above.

The proof of Theorem E is now completed by proving Proposition 1.3.
Proof of Proposition 1.3. We will give here our original proof of this result using
Moser's well-known ideas. It is convenient for our purposes and entirely self-contained.
See, however, the remarks at the end of the proof.

Let u satisfy the assumptions of the proposition. Let us also assume that u is
smooth and strictly positive (so that, in particular, u“"1 is smooth).
We will indicate later how to get rid of this extra assumption.

* N
Let y e Co(l ), ¥ 0. Then
A(Ou)n—’ - *n-1A“n-1 +2 vwn~1v“n-1 . “n-1A¢n-1

and by (1.26)
(1.37) Aow™ ! 5 ™ w2 IR
We will only use ¥(x) = ¢(x/R) for R > 0 with ¢ as in (1.24). In this case
] s 9 m-1
v e Co( ) for every > 0, so the reqularity of ¥ is not in guestion. Moreover,

one easily checks that

1n $P 2800 ] + 4IP3 9012 = 0
{xf+2
for all p > 1 and hence




(1.38) 10721801 + 0P V01 %r Cec <o .,
L

) P

Now, multiply (1.37) by (Wu)p where p » 1 and integrate to find

[ PP (p)™ ) < A [y RGP
(1.39)
-2 [ PR L (s P A

We rewrite the various terms. One has

pro-1 2
(1.40) [ v P ya) - 4R oy 2
(m=1+p) )
2
(1.41) [ puPr® et . -i“—'”—z-f gy itpg a-14p
(m=14p)

- - s-1)2 J un—1+p Awm-1+p
(m-1+p)2

2
-- {%:—:%’;)- [ Vo P ez V™ 2 012 ¢ v 2y

Now we put ¥(x) = ¢{x/R) 4in (1.39), (1.40), (1.41), we use (1.38) and the fact that

8™ is bounded to obtain
pta-1 2
(1.42) [ le@e 2 | copih [ 0@wP + 5[ & wP™)
R

vhere ¢ 1is a constant independent of p and R.

Fix r € 1 and let

m-1
[ -
L (BR)
(1.43) A = gup 3 .
Rr R

Then, (1.42), (1.43) yield, with a new constant,
ptm=1 2

2
(1.44) J |v(o(§)u) < cp(hen) [ (WRIWP for ROr .
Due to the use of Sobolev's inequalities, our proof will now depend on the dimension

N. Let us assume first that N ? 3. Then

-17=




m-1 2 2*

2
(ptm=1) —
(1.45) f|V(o(§)u) 2 | 5 wEw? 1%

where 2* = 2N/(N-2). Combining (1.45) with (1.44) leads to

(1.46) [!to(ﬁ)uls‘"bl‘/' <cptann) [ 0cErar®
where
(1.47) 8 =2%2 = N/(N-2) , b= s(m-1) = (m=1)N/(N-2) .

Multiplying (1.46) by R-“‘ R (vhere Y > 0 will be discussed shortly), and taking

l"h powers one finds

1 X, 8Pt o 88 s 1 X . p,8

(1.48) —n“""”] ()l M Ty [ Rt
Define

,po- 1, Preq = 5Py rd for k = 0,1,...,
(1.49) {0-—'—"“ o s~p—"-e--p"e for k = 0,1

. ’ L% tdeocey,
0 m=1 k1 v,‘m-‘l ) 3 pk+'l k
a, = sup TL'! (N-E!u)pk for k = O,1,00ee,
N Pr _ Pk

R

Nowput p=p., Y = ek+1 in (1.48) and take the supremum over R ? r in the result to

obtain
(1.50) a . < c'p:(A-m)'a: .
Iterating (1.49) yields
2 k+1 2 k+1 k+1
sts +e0°+g 58 . .8 s
Aoy € lelher)] R .
or
1/p. a [}
k+1 k k
(1.51) (a ) < [c(A+a)] Hk(lo)
where
4 a = '4.2+o-o+sh1
x Piay
2 k+1 1/p
s s L] k+1
(1-52) { Hk - (pkpk—1 .e po

k+1
\ B =8 /Py

=18~




-~

and by (1.47), (1.49)

k+1 1

(1.53) pk*1 - 'pk +h=g + (m=1) (.k"’ . sk+.¢'+g) .

From (1.52), (1.53), (1.49) one easily deduces

8 N
( v = Bl T T
- 1 2 2\
n g =281a 2 .20
ko k81 Nlm1+2 N ¢
(1.54) <
lim sup <=
 3aad Mk )
k
1im 6, = 1m 2~ (224 Ny =2,
\ gt K koo Py n-1 m-1
Using this information in (1.51) and recalling (1.49), we conclude that, with a new
A
e, <ot PN
= L (B) ¥
Rn-l R
for R » r. Remembering (1.43) this gives
2
(1.55) A1 < cihem? Iulix/ﬂ .

Finally, we analyze this implicit inequality.

Lemma 1.3. Let 0 < B <a and A, A, L > 0 satisfy

(1.56) A cnia+n®

Then there is a constant K depending only on &, B such that
a < x(pAB/@ Ve I‘1/“:»-8))

(1.57)
Proof. Assume A > A, Then
TS ILEPLEN
and
B, . 1/(a=B)

A< (2°L)
12 A<A, then A°< 28 L AP ana

A< 2B/o L1/a AB/a

whence the result.

-19=
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Using the lemma, (1.55) implies, with a new C,

2) (m=1)
N m=-1
+ul )

A<y

T

and we have (1.27) when N ? 3.

For N = 2, we start from (1.44) and proceed as follows: By the inequality

N
vl . < clVvl y 1* « — = 2 for N= 2 .,
RT3 v N1

applied to vs, 8 2 1 and B8lder's inequality we have

(' " N <cf |WP =cs J Iv'-‘Vvl < es(f vz('-1))1/2(f |Vv|2)1/2
L (R)
or
J v |2 > & v
v <
.2 i g2(s=1)
pto-1
2

Apply this with v = (0(§)u) in (1.44) to obtain

[ 0Ea® P < epn s mtf i EHwPif (0(§)u)('-1)(p+"-1)]

Choose s = 1 + ;:E:—, go that a(ptm=1) = 2p+m~1 and the above inequality becomes

[ @& 0P <oo’pih + ) I WEwWPI?
or, with a new constant,
(1.58) U @& 2 ¢ VAR [ edw? .
This ie treated analogously to (1.46). If we set
=2 +m-1 V¥k20

Po = Vv Py
(1.59) 8 =~—24+2,0 =2
m-

then, by (1.58),

2 2
< .
a,. S pk(A + A)ak




This relation is similar to (1.50) where s is replaced by 2 and we obtain in the same

way ' .

—— a
(1.60) P € ct/R ) "(ao) x

%k
where (see (1.52) - (1.54))

Proy 2N mn@® e 25N e

2 X+ 1
lina = lim 242°+...42" 2

ke k+® P+t

- B

lia 8= lim z“"‘/le - i
> g

k 1.2 2
lim 0 = 1im 270 /p = — (=== 4 2) = ——
Koo k Ko 0 x m m=1 a=1

After letting k tend to ® in (1.60), we have

1 1
Pl I SN lal}

2 l). The proof is

which is exactly (1.55) with N = 2 (recall that then A = o2z =

completed as in the case N > 3.
For N = 1, we use only one step starting from the embedding

vt < clVvi ' .
L (R) L (R)
Por all s 2 1, we have

1w <ec ! IVv'l < cs (f v2(:—1)]1/2(1» IVvlz)‘/E

]
L_J
L (R)
ptm-1

We use this in (1.44) with v = (0(§)u) 2 and p = 1 to obtain

W Ew™ <o+ a) (J 0SHa™ ) eE) .
R 2w R R

Now choose s = 1 + % and this becomes

(1.61) EaT e (foda)? .
L (R)
2+ 1)
We multiply this inequality by R , take the supremum over R ® r and obtain
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1
.u'm—l -1
L (B))
R S clh+a) lu)?
2 r
R
or
1 1 2

A" < eh e )™ lul':ﬂ .

which is exactly (1.55) when N = 1 (then A = ;%?) .
To complete the proof of Proposition 1.1, we now indicate how to drop the aasumption

that u is smooth and positive. If u satisfies the assumption of Proposition 1.1, we

introduce vc > 0 defined by v:-1 = De' “m-t + € where pe is a standard mollifier

and * denotes the convolution in 2. Then Ve 1is bounded, smooth, positive and

m-1 . |
Avc =0 au

> =A .,
Hence above coaputations are valid with Ve in place of u. Since ve converges a.e.
to u when € tends to 0 and is uniformly locally bounded, passing to the limit in

(1.46) ~ written with v in place of u - yields (1.46) for u itself (one easily checks

€
-

that A(vt) converges to A(u) when u el (IF)). The computations coming after (1.46)

do not require any smoothness of u so thatone can complete the proof exactly as

above for N 2 3. If N = 2,1, we may pass to the limit in (1.58) and (1.61) as a ¢+ 0,

etc.

Remarks on Proposition 1.3. H. Brezis and others suggested that this result might

correspond to a simple interior estimate. 1In fact, this is the case. For example, if

)

Lu = -(a“(x)ux x, 1s a divergence form uniformly elliptic operator with coefficients in
179

-
L (BZR) and u > 0 satisfies Lu € f in B,; where f e LP(BZR) with p > N/2, then

-N/p
< c(1ea® tul P A Y )
L s,) £, ) Py Py

R 2R L (B, L (B,

ful

where C depends suitably on the coefficients of L, p and pyg > 0 and a =

Np/{pg(2p~N) + Np).
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Proposition 1.3 follows easily. The proof of this result can be given using standard
results and methods of Moser, etc. This will be done in generality (i.e., in the parabolic
case with lower order terms, etc.) elsevhere.

Proof of Corollary 1.1

Let uy € X, and define u;, as in (1.22)., Then, for all r > 0,

(1.62) limlu, = ul =0 ,
nee On 0'r

Indeed, if Y = ;%T + N, then for all r € R and r ¢ r, ve have

1 1

L - € — - .

o {x1em 18g = vy! o d(lxl‘ro}l“o Yol * 2 f(ro<|x|<n}'“o”
Taking the supremum over R > r with r, ry; fixed yields

1
-ul €= -
l“On Y%'r R j(lxl‘ro}luo “Onl * 2l“olro
so that (see (1.22))

lim sup fu = u b < 20u | .
nee On 0r 0 L

Since 1lim 1lu.l = 0, we obtain (1.62).

0r
r°$- 0

Now, S(',uon) e c((0,®); L‘(IP)) S c((0,%); X). By (1.62) and the estimate (1.10)

of Theorem E, S(*,u, ) 1is a Cauchy sequence in cC({0,T (uy)); X) for all r > 6. Since

on

lim Tr(uo) = 4, U(',uo), obtained as the limit of S(¢,u
rte

On)' is defined on [0,®) and

belongs to C([0,®); X).
Since Xq is closed in X (see Appendix}, u(t) e X, for all t 2 0. The more
precise estimate (1.14) comes from (1.6), (1.12).

Theorem E asserts the existence of a solution u(t) of (1VP) for uy € X and claims

u(t)

(1+lx|2)‘/(n-‘)

o
at the same time that eL (lﬁ) for t e (O,T(uo)). The next result shows

L ]
that this L -estimate can be improved when u; is further restricted. The proof
requires only small changes in the arguments above.

For u e (0,1), we set

-23=




(1.63) el o= osup 5 IB el ,
R u(—= +N) 'R
R m=-1

so that (Il = 0§} . Set
14 r,l

u 1 N,
X '{‘e“zoc“‘)' lfltu<- for some r > 0} .

’

Obviocusly xu c X for all p e (0,1},

Proposition 1.,5. Let b e (0,1) and u,y e xu. Then

(1.65) u(t,uo)o e L-(nu) for 0 < t < +=

u/ (m~1)

Moreover, if

m=1
. - iyl
(1.66) Tt'u(uo) c1/ uo £
then
> >
for R r 1 and 0 < t < Tr,u(“o)
.U(tr\lo)l P
(1.67) L (BR) < SZ . 'ZA/N i - N
2/ (m=1) A 0r,u’ (m=1)N+2 '
R
and the estimates (1.8), (1.10) in Theorem E are valid with I-lr " in place of I-lr
’
Tr " in place of Tt and the constants €4, C3s €3 can be chosen independent of
4
vwe(o1].

Proof. We merely comment on the changes in the proof of Theorem E necessary to prc+#e

Proposition 1.5. Proposition 1.3 remains correct if (1.27) is replaced by

2A (m=~1)

A

(1.27)° - k(W gy N ™)
R L (B) ! '
R
and l'lr " is defined in the obvious way (see {1.25)). 1Indeed, put
L4
'u'n-‘l
L (BR)

(1.43)" Au = gup >

pr R
and use

-24-




'ulm:1
L (B, )
1 f X, .p m=1 2y 2R 1 X, P
S ewP v <2 — [ 0 E))
Rz R (2R)2u R2(1 u) R

< X)u)P
c Au f (O(R)u)

for R > r > 1 to conclude

(1.46)° ( (0(§>u>"”b)‘/° Ccpsnn [ 0wt .
2 2
Then put 8, = u(=27 + N} in (1.49), so O+ u === The result will be (1.55) with A,
lulr replaced by Au, '“'r,u'
Next, we go back to (1.28) which is valid with g{t) = Iu(t)lt u and c independent
,

of ¢ € (0,1]. Combining with (1.6), we firat obtain that

2A/N
c(luolr)t

(1.68) gl{t) € g(0) e
which proves that Iu(t)lr u remains uniformly bounded on [O,Tr(uO»- Then, replace A
,

by Au’ ‘.‘t by l"r u in all the computations (1.28) - {1.36) and use (1.27)' instead
’

of (1.27) to obtain (1.67). The modified (1.8), (1.10) are obtained in a similar way.

In general, Tr u(uo) < Tr(“o) for u € (0,1) so that (1.67) does not directly prove
’

u{t)
(1*lx|2)u/(n-1)

(1.68) and (1.27)°.

that remains bounded for t & (O,Tr(uo)). But for this one can use

To complete the proof, observe that

xu c xo for u e (G,1)

whence lim T (u ) = +=,
e T 0

Remark 8. In Proposition 1.5 we have excluded the case u = 0, Note that the definition

(1.63) with y = 0 would lead to

el = ig8 vr > 0
r,0 AN SN

and the conclusions of the proposition are in fact true with u = 0 (it is well-known that
1 _N ol

u, eL (R) ==> u(t) €L (l”), see (5], (13]). But this is not the natural limiting case,

which {8 in fact the result stated next. It provides a sufficient condition on u, {much
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-
more general than u, € L‘(IF)) guaranteeing U(c,uo) eL (l“) for all t > 0. Moreover
this condition on wu, is necessary by the results of [2].
Proposition 1.3. Let u, € L‘ (Ir) satisfy
0 Loc

(1.69) Iuol = Iuol < v,

sup. [
zel“ B(z,1) 0

where B(z,1) = {x € l?; |x-z| € 1}. Then

(1.70) 1u(e,u_ )l < == Iyl
o & 00

+ c'luolo for t >0 ,
where c, c' depend only on N and m.
Proof. Again the proof is obtained by slightly modifying the proof of Theoream E. First,

Proposition (1.1) remains true if (1.27) is replaced by

2A (m=-1)
(1.21)" W cxM = N ™
N 0 0
L

Indeed put VY(x) = Oz(x) = $(x-z) 4in (1.39), (1.40), (1.41) to replace {1.42) by

ptm-1 2
(1.42)" [ v 2 I" <cptaf (o wP +f (ozmu)"u"‘l
and (1.44) by
ptm=1 2

(1.44)" [ |V0=(x) 2 | ¢ cp(h + Aj) / (Oz(x)u)p .
where

A, = lulm-1 .

0 v h

For N > 3 we uge Sobolev's inequality to obtain
(1.48)" J (oz(x)u)"”" < %h + A%t W wP®

with s, b defined as in (1.47). Then set
pb = 1 pk+1 - pks +b

P,
k
= sup f (¢ (x)u)
ak zel“ 2z

and finish as in the proof of Theorem E to obtain (1.27)" by noticing that
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e

Ll

- P
tul = sup, tal™ ! € ¢ 1lim sup (ak) L

1
-« -
L) zed® L (a(z,2)) Ko
Next we go back to (1.28) and modify the arguments to obtain
m=1

g
AT )

gtt) € g(o) + 5 tut (r)ar

with g(t) = lu(t)lo. Obviously adaptations of the rest of the proof of Theorem E lead to

(1.70) with ¢' = 0 but for t e (0,c,/lu°l:"1). To complete the proof, one uses that

t IU(t,uo)l - {s nonincreasing, so that
N
L (R)
22
N m=1
vt >0, lutt,u il (& + S ) au ), e = o /a0
LA N :Y :X 00 ' o 17"8% %

0

which yields (1.70) with ¢' = c/c:.
Our last existence result concerns (IVP) when the initial datum is a Radon measure U

on B satisfying

{(1.71) sup

Rr 'y +N
R

fut o > .
Jul (B = tub_ < for r > 1

where |u] is the variation of M. We set

2(u) = lim ful .
rie r

Proposition 1.6. Let U be a Radon measure on ' satisfying (1.71) and Cqs Cys Cq the
constants of Theorem 1.1. Then there is a function u(x,t) defined for
0 <t < T(u= <:1/l(|.t)m“1 such that

fu(e, )l

L (B)) ¢
R_ ¢ 2 lu.:x/ﬂ

(a) ——r—— ¢~
R2/(n—1) A

for R>r21, 0<Ct<T (W)= c1/lul:-1

() {ew u(*,£)} € (o, ) Ly (B

* ‘
(c) Tu( ,t)lr < c lulr for 0 € ¢ < rr(u)

3
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» N
(d) For ¢ e Co(l x (0,T(K)))

j:‘”) / Cab, + lal™ a ay) = [ vix,0)duix) .

Proof. First observe tht (a), (b), (c) imply that wu(x,t) is a measurable, locally bounded

o
function on HF x (0,T(u)) such that, for 6 e CO(IF) with 98(x) =0 on {ix] » R > r}

and 9 > 0
2A(m=-1)
t m=-1_2 N t _4dart
Io] I\llne < Iel.c R .uI!' Io IBR |u(x.")| TA(m_1)
(1.72)
§ =2AMm 22 (m~1)
<101, c(R) Mub_ ¢t R A

Hence (d) makes sense.

Now let un - Dn'u where Dn is a sequence of mollifiers on ®. Then v e X and
Iunlr converges to lulr for all r > 0. Theorem E provides existence of un(x,t) =
U(t,un) satisfying (a), (b), (c¢), (d) with b vy in place of y4 and u. 1In
particular, u, is locally bounded, uniformly in n on RN x (O,T(un)). Then, if one can

prove that a subsequence of u, converges a.e. (x,t), the limit u will satisfy the

n
conclusions of Proposition 1.4 ((d) is obtained with the help of (1.72) which controls the
behavior near t = 0). This a.e. convergence is a consequence of the compactness of u:
in Lioc((O,T(un)) x R“) as shown by the following remarks.

Let R?> 1 and ¥(x) = 0(%) where ¢ is chosen as in (1.24). Then multiplying

(formally) (IVP) by ¥ Iulm-1u (written ¢ u® for simplicity) gives
/ vumut = [ wa® = -] J"Tyn” - v lvalz
1
=2 o - [ wwa™?

We deduce for 0 < 8 < t < T(un)

o+ 1

m,2 1 ¢t 2m 1
‘_. ——
! 2 Is I{Ix|<2R}“ * f{IxI‘ZR}u (s)

(1.73) I I ixiems 18
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which proves that Vu: is uniformly bounded in Lioc(lp x (O,T(un))). Then we multiply

{IVP) by wu“‘)t and obtain

m. m m :
[y = - ™y Vo - [ v WV !

This implies

m,2 v m 2,1/2 1/2 1
(1.70) [ vea® o, + 3 3 [ viva®? < IWT% - U{|x|<2k}lvu 12)V2(f viw™ g?) }
where A
(1.75) I—T%l <CcR) <=

¥ e 2

by (1.38) applied with p = 2. Now we remark that
(1.76) [ vi™ )2 < md™ e [ vu® u, . i

t Ad tt

L (s,.)

We use (1.74), (1.76), (1.73) to obtain

(1.77) at)? + ate) = [ ™12 < cmiomate) ([o IWRer(2)2 1
at an
where we set a(t) = [J ¥{(u™) e 11/2, o(t) = % W™ e - + But
L (s, )
2 2R
¥eycamy<d

Thus, (1.77) implies

2
9‘:'[ vive®|? < £ :R) o(t) IB W2 .
2R

Coupled with (1.73), this proves that Vu: is uniformly bounded in x. S0, T )5
L2(By)) for all R > 0. We use this in (1.77) to obtain

I: a2(0)40 € c(R,t,8) < +® for 0 <8 < ¢t < T .

] m m 2 N
Finally, we have proved that u, Vun; (“n)t are bounded in Ly (R X (0,7(1 1))

uniformly in n. This yields the compactness needed for u, and completes the proof of
Proposition 1.4 - provided the above computations are justified. We leave this last task

to the reader.

29




Section 2: Uniqueness

We shall use the notation of Section 1.
Theorem U. Let T > 0 and u: l“ x {0,T] * R satisfying
(1) uwectto,r; & @ nt”0,mx0
L[] loc ’ ’

e (& x [e,11) ,

(1) ve> 0, w0 .
(141) u = 81u)™ ' in DR x (0,m)) .

Then
u(t) = U(t,u(0)) for O € t € min{T,T(u(0))) .
We begin by proving a weaker unigueness result, namely:
Proposition 2.1. Let T > 0 and u, v satisfy
1 N
(1) u, vec(lo,Tl; L’-OC(n )),
« N
eL (R x {o,7]),

(1) 1° vp

®1/ - 1/(a-1)
(114) u, - 8ol tu = v = 819" Ny a0 Ol x 0,
(iv) (u~v)(0) =0 .
Then u = v.
Remark 1. Proposition 2.1 has been proved in the case N = 1 by Kalashnikov in {8] with
the extra assumption that u, v are continuous. We use similar methods here. All the
other uniqueness results that have been obtained for (IVP) deal with initial data which do
not grow when |x| + * (see [8), [10], [11), ([12), [14]). Theorem U recovers all of

them but those dealing with initial data which are measures (see [10]}, [12]).

Proof of Proposition 2.1. It suffices to prove u(T) = v(T). For simplicity we will

write u™ in place of lul"'u. As a consequence of (iii), (iv), for all
-
ve co(l“ x [0,7]) we have
51 e, + (™ = v = [ v mwnem .

1f ve set

m [ ]
alx,t) = LKLY KE) 40 0y by g ou(x,t)

u(x,t)-vix,t)

- o™ x, ) if ulx,t) = v(x,t)

the above equality becomes

JERY




(2.1) 121 uevite, + at) = [ e mvm .

Now let Ry > 0 be fixed and

-
s ec @ x [0,71), a >0, n= 12,000,

(2.2)
0e c;(n“), 0<68¢<1, 8(x)=0 for Ixl >R -

Let R > Ry + 1 and Wn be a solution of

¥ t a8V =0 in 0<E<T, ix| <R ,

nt

(2.3) "nl Ix|=R =0 ,

Vn(x.'l‘) = B(x) .

Finally, let 0 < € < % and

o ecoh, 0¢9 <1,

(2.4) ¢, =1 on {1x] < r-2¢}, $, =0 on {I1x] > r-€} ,

lVQeI

<, el <,
cE o
L € L ez

Now put ¥ = ¢.¥  in (2.1) to get (recall a(u=v) = u® - V®)

121 evingtama dav ¢ [ arPr 20T+ ¥ 000)

(2.5)
= [ (vv)(T)8 .

We denote the first and second integrals above by Ine' Jne respectively. Next estimate

Jne using (2.4):

. LA
1951 € €[5 Jipeecrmpem o™ 1+ —37)

Since *n =0 on {I|x| =R}

sup |0n(x,t)| e sup IVVn(x,t)l
R-2€<|x]<R R-2€<[x (<R
0<t<T 0<e<T
-31-




and
3Wn
lim [ sup |V¢n(x,c)|) = gup |VWn(x,t)| = sup I35~
€¥0 R=-2€<]x)<R |x|{=R |x|=R
0<t<T 0<t<T 0<e<T

3
where 3;9 denotes the normal derivative of *n on the sphere {|x|

(s,t)] ’

= R}, Hence

3
J_ = lim sup Jnt < c'ny-"( sup |3;2 (x,t)l]‘lin sup lun-vnltx,t)
€40 {x{=R €+0 R-2e<|x}<R
0<t<T 0<eL?

and, using (ii),

{2.6) J ScRr ((sup 152 (x,t31) .
n v

(x{=R

0<t<T
For I _, we have

ne
.12 172 12
- 42 n 2

(2.7) Ine < In (fg f{lxl‘n}‘“ vi = ) (f: ] 'n'A‘k' ) .

1l
Let us now estimate sup |3;5 (x,t)|. Assume we have chosen a, such that

Ix|=R
0<t<T

(2.8) ln(x,t) < KR(1 + lez) for 0 <t<T, xe !F

Por reasons which will become apparent, let o, B be such that

(2.9)

2 =1

and

(2.10) a > 4NKB(B+1) .

Set

a({T~t)
W(x,t) = .
Oeix P

Then

=32~
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2
la 8¥] € K(1 + 1x[2) e T '232 ot ‘B‘B*‘;L;lz
(1+}x]") (1+]1x1%)

< 4NKB(B+1)Y .
Since vt = -a¥y, by (2.10) and above inequality
vt + unAw <0 .

Thus, if we now choose A so that

(2.11) ¥, (x,T) = 8(x) < 78~ 2 WD, Ixl € R, 4
(1+]%]|%)

by the maximum principle we will have

(2.12) xv>vn for 0 <t <T, Ix|l €R , |

which provides a first estimate for Wn. Note that (2.11) is satisfied if
R TIRTI el

Let us now construct a function g on the set {(x,t); R-1 € |x] <R, 0 < t ¢ T}
such that
(2.13) g>¥ and g(x,t) =0 for Ix| =R, 0 Ct<T . {
By (2.3), (2.13) we will then have

3
W(q-wn)(x,t)<o for x| =R, 0 <t CT

(1]
and hence (recall that 5;5 < 0) ﬂ
ET) 2
(2.14) sup l;;-'l (x,t)| € sup I3% (x, )| .
|x|=R jx}=R
0<t<T 0<t<T

If N ? 3, let g, which is independent of t, be defined by

gix,t) = -_EE:E + e = g(x)
Ixl
where e, d satisfy
4 + o= xea’r
(r=1)""2 O+r-nHP
(2.15)
+ e=0 .,

RN-2




Note that Ag = 0 on {R-t<|x|<R}. Moreover, by (2.12), (2.15), (2.3)

g(x) > ¥ (x,t) for Ix] ~pR=1, 0 ¢t ¢ ,
gi{x) > On(x,'r) =0 for R-1< |x] <R ,
0= g(x) = Wn(x,t) for x| =R, 0 < t<T .

Therefore (2.13) holds by maximum principle and 80 does (2.14). It remains to estimate

32

3g o l2ma 228 2™ 11
a" 1 (ewen?)f e 2
Hence
3
(2.16) 39 (x) < ;‘2’—3 for x| =R ,

where c does not depend on R > 2. The same computations with g(x) = afn{x| + e if
N=2 and g(x) = d|x] + e if N = 1 lead to the same estimate (2.16). Combining with

(2.14), we have

a*u c
(2.17) sup IW (x,t)] € =5 .
Ix)=R r2?
1414
Going back to (2.6), we obtain
N-1+ -—:‘_‘1 -28
(2.18) Jn € cR

where c depends only on m, N, 8, Ry and K defined in (2.8).
To estimate multiply the equation in (2.3) by Atn and integrate to obtain
1 2 2 1 2
SRR A NIRRT
Thus (see 2.7)

‘ 2172
a-a_)
(2.19) 1 <cm (f] S —

. n 0 ‘{[{x{<R} a °

Let us choose a - a'pn +% where a is the extension by 0 of a to R X RN and

[ a 2 sequence of mollifiers in R X lu such that

- 2 .1
I T tmienytemare)® < 5

-34-




Then, a, satisfies (2.2), an H %, and a, satisfies (2.8) with
K=1+m nAx(lum-lol N ' 1™ ot - N
L (R'x(0,T)) L (R x{(0,T))
which is finite by assumption. Moreover
2 1/2
(a~a_ ) N.1/2
T n 1 (TR ) c(R)
. —— < - - .
(2.20) Yo Jixpemr—2—) o e y=
n n

Now, for R fixed, R > Ry +1, welet n tend to * in (2.6) and (2.7). Using

(2.5), (2.18), (2.19), (2.20), we obtain
if (wvi(mio] < c &, 0-N-1+%-—28 .
Letting R tend to *® and using (2.9) finally yield
{1/ (u=v)(T)8| <0 .

Since 9 i@ arbitrary we deduce u = v.
Proof of Theorem U

Let u satisfy the assumptions of Theorem U. By Theorem E and Proposition 2.1, for
all € > 0 small enough
(2.21) u(t+€) = yl{e,ule))
for all 0 < t < min{T-€,T{u(€))). Thanks to the continuity property stated in Theorem E,
(1.9), Theorem U will be proved by letting € go to 0 in (2.21), provided one can show

that u(€) converges to u(0) in L‘(Pu) for some G > 0 (note that

T (u(0)) » lim sup T (u(€))). But, by (2.21) and Theorem E
r €+0 r

[+]
I < x(:.”' x e R“. 0 <t <« min('r~e,'r1(u(e))) ,
t

-1
(2.22) e (“';*"
1+ x|

-
where e depends on Iu(C)lx. Since u e L (0,T:X), one can pass to the limit in (2.22)

and obtain
m=1
(xlt, (=]
(2.23) 2 | <
1+|x|2 tx(m 1)
«35-




where ¢ does not depend on €. On the other hand, as noticed in the proof of the

estimates (1.8), (1.9), for all y e C;(IN), ¥ >0, one has
S0 vuceueny < f aviuce,u(e ™ on  (0,T(ul€)))
; for all € > 0 small. By (2.21) this gives
* %;! viue)] € [ apjul™ for t e (0,a), @ > 0 and small .
Thanks to (2.23), we may integrate this up to 0 and get

(2.24) [ wlaer) < [ vl + e [§ m[ a1+ IxlHun .

Now we choose a > 1 +¢+§. By Lemma 1,1
m=1 2

(2.25) I(H-fxf )u(‘l)l € chuld - € 40
L (0,Ts L (0 )) L (0,T:X)
Ixi -
We put ¢ = 9“9( o ) in (2.24) where 9 e Co(l), 8(r) = 1 for re [0,1) and we let n
tend to *®, Thanks to (2.25) we obtain, in the limit,

(2.26) e luter] € [ o luo)l + ccy It [ o lutnil

0 —x(ﬁ')'
where we used lApul(Hlxlz) € ¢ oPqr From (2.26), (2.25) we deduce
lim sup [ o lute)] ¢ [ o luto)) .
40
Combine this with Fatou's lemma and one obtains that f palu(e)l converges to
f Dolu(O)I. since u(€E) converges to u(0) in Lloc(lu), by Lebesque‘s theorem, u(€)
converges to u(0) in L1 » a)' This completes the proof of Theorem U.
Combining Theorem E and Theorem U, we can state
Theorem EU. Let ug € X. Then, there exists T € (0,”*] and a unique maximally defined
solution u of

(L) uec(lo,T) L (l ))n L ([e,r); x) ,

Loc

(i1) en,'oc(l x (0,T)) ,

Y4/ (m-1)
(144) = AMui®™ N in @ x (0,1
(iv) wu(0) = L

Moreover, if T < %=,

(a) 1lim lu(t)lz =® _ ¥r>0
T

=36~




T I O A
b7 T |

(@) um [E 0™ Nwer o=
T LY

Proof. Clearly, there exists a maximally defined u on some [0,T) with properties (i),
(ii), (i11), (iv). The uniqueness is a direct consequence of Theorem U.

Assertion (a) must hold, for if there is a sequence of times tn tT
such that Iu(tn)lr € M<*®, we can define

ult) , t <t
n

v(t) = =1
Ult-t , ule )) , t <ttt +c /M .

But v extends u past T for large n.

Assertion (b) is a direct consequence of (a). The last assertion follows from (1.26)

and (a).
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i Appendix X
i We begin with the proof of Lemma 1.2.

Proof of Lemma 1.2. PFor (i), let f € X and

i 1

. —_ < > .
f (A1) 3 - “lxl‘n}lfl c for R?> 1
! Rl-l j

Now we have

£(x) £(x)
(A.2) / o] / 1£(x)] + [
("lxlz)c {Ix]<1} {I1x|>1} leza

and
1 | I 4ar

SR
i
: I}

2a - 2a /x| L2001

' Thus Fubini's theorem and (A.1) yield

| 12O ] o L=
: Loiapony EEL ax = 27 10 () el T 0 18R
Ix| R ‘
2
e[ s ar c
2a ‘1 _2a+t 1 N
R da{a- =7 - 2)

We then use (A.2) to obtain X c L‘(Dc) with continuocus embedding.

To prove (ii), observe that tn + £ in L;.oc(‘u) implies that for R ? r

1 l 1
—_— £} € 1im inf __..I 1£.1
2 {1x1<}! 2 Uxi<r} !fa
Rn-i w n l‘m-1 w

< lim inf 1£ 1
nee nr
and the result follows upon taking the supremum over R ?» r in this inequality.
The next result is used in Proposition A.2 to establish the equivalence of (0.3) and

(0.3)" of the introduction.




Proposition A.1. Let A eR, 8,8 20. For ue L;oc(l“), u >0, define

u(x)

I(u) = sup — 0 I(IXI‘R} (1e)x |2 FPY

R»1 R

Jtu) = sup Tz‘s ixisnd X .

R»1 (1+|
Then, there exists cq = c‘(5) < ® guch that
(A.3) Jlu) € e,(u) .
1f 9 > 0, there exists c, = c2(5,9) < ® guch that
(A.4) I(u) € cyJ(u) .
Proot,

The estimate (A.3) follows from the fact that for R 2> 1, {x{ € R,

1 1+R 1 [ 1
=z < ( <2 .
R 22 (1))’ (eix1H)®
It is sufficient to prove (A.4) for A = 0 (then apply it to 2 2 % instead of
(1+]x]|
u). One can also assume u({x) = 0 for x| € 1. Indeed if u = uy +ou, with
0 it x| <€ 1 u(x) Lf |[x| <1
u,(x) - uz(x) =
ulx) if x| > 1 0 if x| > 1
then
<
I{u) I(u1) + I(uz)
and
Iu,) = f -———3<I ulx) = J(u) € Iu) .
<
2 a®® Taeien 2

Thus we assume A = 0 and u{x) =0 on {|x| € 1}. We use that for all R > 0

[ u(x; 3N 127 [{lx|<R)“(x, < %’ _% Jlu) .
(5 <SIxi<R} (1+(x|“) (44R°)

1+z—

-39~




Hence for all n 2 0

. 2 i) 46(1,;)e Jw .
{ <Uxl€ =} (1+]x]%) 2
2n+1 PR
Summing these inequalities over all n » 0 gives
u(x) 66 1
/ <4 R — Ju)
{ixl<r} (“lez)ﬁ 1270

whence (A.4).

Proposition A.2

1 N 1
1) x={fer, (@) ;:f N I(lx“n)lf(x)lpv(-_”(x) <=

(1i) (f e x.:oc(:“): fo ert" @) cx .

1/(m~1)

1
(111) L(DL‘.!)CX .

m-1 2

(iv) More generally, for 1 S p < =

P N p
{(te Lyoo (R £ eL (o“/z)} cx .

1/(m=1)

1

Proof. For (i), apply Proposition (A.1) with 6 = N, § = ey A =0 and recall (1.2),

(1.3). Then (ii) follows from (i). To obtain (iii), apply (A.4) with © = A = 0 and
N
§ = ;%T + 2° For (iv), set
P - 1,_N
(lflnv(n_”) Pysg =weEL () .
Then
-4 ! LWL

N N(1- =) —_—
PP p 2 m-1 2 1/p
f(le‘RJIfI <R [!{le‘n}lfl ] <R (1+R") ?f w)

2
Nt ——
S€cR =1 .

We now identify xo.

Proposition A.3. The space X, = {u e x; lim '“'r = 0} is the closure of L‘(IF) in X.
rte
2

Proof. Let f & L'(lp) and gset Y = =1 + N, Since




1 j 9 1
= jul € = f lu-gf] + = [ £l .
gf * CIxi<r} gY ‘{IxI<r} &' {Ix|<R}
we have
ful_ € bu-fl_+ Lan .
r o L (R)

Since l-lr decreases with r, for rg >0

lim sup Iulr < Iu-tlr
r*e 0
and

lim sup lul_ < inf(lu-f1_ s fe ey .
e 0

Thus lo contains the closure of L'(IF).

Conversely, assume lim l“'r = 0., Then, if 1. is the characteristic function of
rte

{ix|€r}, u.1r converges to u in X when r tends to = (whence the result since

“"r e L‘(IP)). Indeed

1 1
P =\ B e— [ 4 -
RY f{|‘|<n1|u u.t | RY I(r(lxl‘n}'“' lul for all R 21

Proposition A.4.

1
(1) {rer, ™) um Itoale,,, . (x) =m0} cx, .
Loc |x|+® 1/(m=1) 0

(11) Let 1€p<e™ and O e x‘:oc(.‘“) satisfy © 2 0 and 1lim O(x) = =,

x|+
Then

p N P
(f e Lyoc(R ) £P ey (epN/z)) cx

1/ (m=1) o

(114) Por 1<pcw, Plo
— + -—
m=1 2

)cxo .

Proof. For (ii) let w = [Iflpv(n_”]p SDN/Z. Then

LY § I




N(1- 1)

P p, /P
[xiem1e! € f{|x|<r°)'f' +R U{ro<|xl<R}|“ ]
1 1 N
N(1= =) —_— =
< f e+ & P oer?)™' P(gup (0exn)”")(f w)V/P
{Ix}<r, }
0 r°<|x|

Hence
1 -1
1l < ___f If£]l + ¢ sup (8(x)) .

r 2 . {lx|<r0} l‘o<lxl

=1
x

and we deduce (ii). The assertion (i) is obtained similarly. For (iii) note that

P - P
1£1 0_1_’ N [Itl9~,_l 91__2 o!
m=-1 2 m-1 m=-1 2
el

and use (iii) with B(x) = (1+]x|%)*"',

Proposition A.5.

{(fex; # e L (®")) 1is not dense in x .

1/(m=1)
Proof. By Proposition A.2 (i) and Proposition A.1, the claim is equivalent to saying that
-

L (.)l) is not dense in

1
tvet! (l“); sup — | [v] < =}
Loc 1 R {1x} <R}

with the obvious norm. Let

n on n-%‘lxl‘n n= 1,2,...

vix) =
0 otherwise .

If M-I <R S M

M
1 I [ N-1 ' -
L V0] € In " cc ¢,
g Uxl<R) m=1)N 1
while 1f £ e L ("), |£] < x,
-42~




i R A s AN G - 2

Hence

1 [ c nEll N-2 I
- lv-£| > = n (n-k)
[4
o {ix|€m} o ek !
-] N N N=-1
> = (m -k = km ) . {

sup “I ‘lu’|=c>olvfel’l(.) .
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